Epic Next JS 14 Tutorial Part 6: Create Video Summary with Next.js and Open AI
In the previous tutorial, we completed our Dashboard and Account pages. In this section, we will work on generating our video summary using Open AI and LangChain.
- Part 1: Learn Next.js by building a website
- Part 2: Building Out The Hero Section of the homepage
- Part 3: Finish up up the homepage Features Section, TopNavigation and Footer
- Part 4: How to handle login and Authentication in Next.js
- Part 5: File upload using server actions
- Part 6: Get Video Transcript with OpenAI Function
- Part 7: Strapi CRUD permissions
- Part 8: Search & pagination in Nextjs
- Part 9: Backend deployment to Strapi Cloud
- Part 10: Frontend deployment to Vercel
We will kick off the tutorial by working on our SummaryForm
component. This time around, instead of using a server action,
we will explore how to create an API route in Next.js.
You can learn more about Next.js route handlers here
But first, let’s create our summary form, which we can use to submit the request.
Navigate to src/components/forms
and create a new file called SummaryForm.tsx
and paste in the following code as the starting point.
"use client";
import { useState } from "react";
import { toast } from "sonner";
import { cn } from "@/lib/utils";
import { Input } from "@/components/ui/input";
import { SubmitButton } from "@/components/custom/SubmitButton";
interface StrapiErrorsProps {
message: string | null;
name: string;
}
const INITIAL_STATE = {
message: null,
name: "",
};
export function SummaryForm() {
const [loading, setLoading] = useState(false);
const [error, setError] = useState<StrapiErrorsProps>(INITIAL_STATE);
const [value, setValue] = useState<string>("");
async function handleFormSubmit(event: React.FormEvent<HTMLFormElement>) {
event.preventDefault();
setLoading(true);
toast.success("Summary Created");
setLoading(false);
}
function clearError() {
setError(INITIAL_STATE);
if (error.message) setValue("");
}
const errorStyles = error.message
? "outline-1 outline outline-red-500 placeholder:text-red-700"
: "";
return (
<div className="w-full max-w-[960px]">
<form
onSubmit={handleFormSubmit}
className="flex gap-2 items-center justify-center"
>
<Input
name="videoId"
placeholder={
error.message ? error.message : "Youtube Video ID or URL"
}
value={value}
onChange={(e) => setValue(e.target.value)}
onMouseDown={clearError}
className={cn(
"w-full focus:text-black focus-visible:ring-pink-500",
errorStyles
)}
required
/>
<SubmitButton
text="Create Summary"
loadingText="Creating Summary"
loading={loading}
/>
</form>
</div>
);
}
The above code contains a basic form UI and a handleFormSubmit
function, which does not include any of our logic to get the summary yet.
We also use Sonner, one of my favorite toast libraries. You can learn more about it here.
But we are not using it directly; instead, we are using the Chadcn UI component, which you can find here.
npx shadcn-ui@latest add sonner
Once Sonner is installed, implement it in our main layout.tsx
file by adding the following import.
import { Toaster } from "@/components/ui/sonner";
And adding the code below above our TopNav
.
<body className={inter.className}>
<Toaster position="bottom-center" />
<Header data={globalData.header} />
<div>{children}</div>
<Footer data={globalData.footer} />
</body>
Let’s add this form to our top navigation by navigating to the src/components/custom/Header.tsx
file and making the following changes.
// import the form
import { SummaryForm } from "@/components/forms/SummaryForm";
// rest of the code
export async function Header({ data }: Readonly<HeaderProps>) {
const user = await getUserMeLoader();
const { logoText, ctaButton } = data;
return (
<div className="flex items-center justify-between px-4 py-3 bg-white shadow-md dark:bg-gray-800">
<Logo text={logoText.text} />
{user.ok && <SummaryForm />} {/* --> add this */}
<div className="flex items-center gap-4">
{user.ok ? (
<LoggedInUser userData={user.data} />
) : (
<Link href={ctaButton.url}>
<Button>{ctaButton.text}</Button>
</Link>
)}
</div>
</div>
);
}
Let’s restart our frontend project and see if it shows up.
Now that our basic form is working let’s examine how to set up our first API Handler Route in Next.Js 14.
How To Create A Route Handler in Next.Js 14
We will have the Next.js docs open as a reference.
Let’s start by creating a new folder inside our app
directory called api
, a folder called summarize
, and a file called route.ts
. Then, paste in the following code.
import { NextRequest } from "next/server";
export async function POST(req: NextRequest) {
console.log("FROM OUR ROUTE HANDLER:", req.body);
try {
return new Response(
JSON.stringify({ data: "return from our handler", error: null }),
{
status: 200,
}
);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
}
Next, let’s create a service to call our new route handler. Navigate to src/data/services
and create a new file called summary-service.ts
.
Create a new async function called generateSummaryService
with the following code.
export async function generateSummaryService(videoId: string) {
const url = "/api/summarize";
try {
const response = await fetch(url, {
method: "POST",
body: JSON.stringify({ videoId: videoId }),
});
return await response.json();
} catch (error) {
console.error("Failed to generate summary:", error);
if (error instanceof Error) return { error: { message: error.message } };
return { data: null, error: { message: "Unknown error" } };
}
}
The following service allows us to call our newly created route handler located at api/summarize
endpoint. It expects us to pass a videoId
for the video we want to summarize.
Now that we have our basic route handler let’s return to our SummaryForm.tsx
file and see if we can request this endpoint.
Let’s modify our handleFormSubmit
with the following code to use our newly created service. Don’t forget to import the generateSummaryService
service.
import { generateSummaryService } from "@/data/services/summary-service";
async function handleFormSubmit(event: React.FormEvent<HTMLFormElement>) {
event.preventDefault();
setLoading(true);
const formData = new FormData(event.currentTarget);
const videoId = formData.get("videoId") as string;
console.log(videoId);
const summaryResponseData = await generateSummaryService(videoId);
console.log(summaryResponseData, "Response from route handler");
toast.success("Testing Toast");
setLoading(false);
}
When you submit your form, you should see the message returned from our route handler in our console log.
Now that we know that our Summary Form and Route Handler are connected, we can work on the logic responsible for summarizing our video.
Using Next.js Route Handler, LangChain and Open AI To Create A Summary
This section will examine how to create a video summary based on the video transcript.
We will be using a couple of services to help us accomplish this.
Prerequisite
You must have an account with Open AI. If you don’t have one, go here and create one.
Getting Transcript From YouTube
In the past, I have used the youtube-transcript library; interestingly, it broke just recently. You can read through the issues here.
Luckily, the fantastic community created a workaround, which we will use in our code.
The fix might have been merged for all who read this in the future, so you could update your code and use the youtube-transcript
package directly.
NOTE: Using other libraries, especially ones not officially supported, can lead to breaking changes, so keep this in mind.
So, if you need a service to be guaranteed, it may be valuable to create your own implementation.
I started building a plugin in Strapi to create transcripts using the OpenAi whisper service. Once it is done, I will make a blog post around it.
But for this video, we will follow the following steps: navigate to src/lib
, create a file named youtube-transcript.ts
, and add the following code.
import { parse } from "node-html-parser"
const USER_AGENT =
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36,gzip(gfe)";
class YoutubeTranscriptError extends Error {
constructor(message: string) {
super(`[YoutubeTranscript] ${message}`);
}
}
type YtFetchConfig = {
lang?: string; // Object with lang param (eg: en, es, hk, uk) format.
};
async function fetchTranscript(videoId: string, config: YtFetchConfig = {}) {
console.log("fetchTranscript", videoId);
const identifier = extractYouTubeID(videoId);
const lang = config?.lang ?? "en";
try {
const transcriptUrl = await fetch(
`https://www.youtube.com/watch?v=${identifier}`,
{
headers: {
"User-Agent": USER_AGENT,
},
}
)
.then((res) => res.text())
.then((html) => parse(html))
.then((html) => parseTranscriptEndpoint(html, lang));
if (!transcriptUrl)
throw new Error("Failed to locate a transcript for this video!");
// Result is hopefully some XML.
const transcriptXML = await fetch(transcriptUrl)
.then((res) => res.text())
.then((xml) => parse(xml));
const chunks = transcriptXML.getElementsByTagName("text");
let transcriptions = [];
for (const chunk of chunks) {
const [offset, duration] = chunk.rawAttrs.split(" ");
transcriptions.push({
text: chunk.text,
offset: convertToMs(offset),
duration: convertToMs(duration),
});
}
return transcriptions;
} catch (e: any) {
throw new YoutubeTranscriptError(e);
}
}
function convertToMs(text: string) {
const float = parseFloat(text.split("=")[1].replace(/"/g, "")) * 1000;
return Math.round(float);
}
function parseTranscriptEndpoint(document: any, langCode?: string) {
try {
// Get all script tags on document page
const scripts = document.getElementsByTagName("script");
// find the player data script.
const playerScript = scripts.find((script: any) =>
script.textContent.includes("var ytInitialPlayerResponse = {")
);
const dataString =
playerScript.textContent
?.split("var ytInitialPlayerResponse = ")?.[1] //get the start of the object {....
?.split("};")?.[0] + // chunk off any code after object closure.
"}"; // add back that curly brace we just cut.
const data = JSON.parse(dataString.trim()); // Attempt a JSON parse
const availableCaptions =
data?.captions?.playerCaptionsTracklistRenderer?.captionTracks || [];
// If languageCode was specified then search for it's code, otherwise get the first.
let captionTrack = availableCaptions?.[0];
if (langCode)
captionTrack =
availableCaptions.find((track: any) =>
track.languageCode.includes(langCode)
) ?? availableCaptions?.[0];
return captionTrack?.baseUrl;
} catch (e: any) {
console.error(`parseTranscriptEndpoint Error: ${e.message}`);
return null;
}
}
export function extractYouTubeID(urlOrID: string): string | null {
// Regular expression for YouTube ID format
const regExpID = /^[a-zA-Z0-9_-]{11}$/;
// Check if the input is a YouTube ID
if (regExpID.test(urlOrID)) {
return urlOrID;
}
// Regular expression for standard YouTube links
const regExpStandard = /youtube\.com\/watch\?v=([a-zA-Z0-9_-]+)/;
// Regular expression for YouTube Shorts links
const regExpShorts = /youtube\.com\/shorts\/([a-zA-Z0-9_-]+)/;
// Check for standard YouTube link
const matchStandard = urlOrID.match(regExpStandard);
if (matchStandard) {
return matchStandard[1];
}
// Check for YouTube Shorts link
const matchShorts = urlOrID.match(regExpShorts);
if (matchShorts) {
return matchShorts[1];
}
// Return null if no match is found
return null;
}
export { fetchTranscript, YoutubeTranscriptError };
You will need to install the node-html-parser dependency. A fast HTML parser.
yarn add node-html-parser
Once everything is installed, let’s implement this in our route handles and see if we can get your YouTube transcript.
Navigate to src/app/api/summarize/route.ts
and let’s import our fetchTranscript
function that we just created from src/lib/youtube-transcript.ts
.
import { fetchTranscript } from "@/lib/youtube-transcript";
Let’s make the following changes.
const body = await req.json();
const videoId = body.videoId;
let transcript: Awaited<ReturnType<typeof fetchTranscript>>;
try {
transcript = await fetchTranscript(videoId);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(JSON.stringify({ error: "Error getting transcript." }));
}
console.log("Transcript:", transcript);
We will get our videoId
from the req
and pass it into our getTranscript
function.
The completed code should look like the following.
import { NextRequest } from "next/server";
import { fetchTranscript } from "@/lib/youtube-transcript";
export async function POST(req: NextRequest) {
console.log("FROM OUR ROUTE HANDLER:", req.body);
const body = await req.json();
const videoId = body.videoId;
let transcript: Awaited<ReturnType<typeof fetchTranscript>>;
try {
transcript = await fetchTranscript(videoId);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
console.log("Transcript:", transcript);
try {
return new Response(
JSON.stringify({ data: "return from our handler", error: null }),
{
status: 200,
}
);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
}
Now, let’s test our front end.
Once we submit our form, we should see the following output in our console.
Transcript: [
{
text: "In the last chapter, you and I started to step ",
offset: 0,
duration: 2009,
},
{
text: "through the internal workings of a transformer.",
offset: 2009,
duration: 2010,
},
{
text: "This is one of the key pieces of technology inside large language models, ",
offset: 4560,
duration: 3365,
},
// rest of the items
];
Nice. We are getting our transcript, but it is an array that includes the time code. We want the text. Let’s create a utility function to do this conversion for us.
Let’s add this function to the top of our code in our route handler.
function transformData(data: any[]) {
let text = "";
data.forEach((item) => {
text += item.text + " ";
});
return {
data: data,
text: text.trim(),
};
}
Now, let’s use it.
const transformedData = transformData(transcript);
console.log("Transcript:", transformedData);
The updated code should look like the following.
import { NextRequest } from "next/server";
import { fetchTranscript } from "@/lib/youtube-transcript";
function transformData(data: any[]) {
let text = "";
data.forEach((item) => {
text += item.text + " ";
});
return {
data: data,
text: text.trim(),
};
}
export async function POST(req: NextRequest) {
console.log("FROM OUR ROUTE HANDLER:", req.body);
const body = await req.json();
const videoId = body.videoId;
let transcript: Awaited<ReturnType<typeof fetchTranscript>>;
try {
transcript = await fetchTranscript(videoId);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
const transformedData = transformData(transcript);
console.log("Transcript:", transformedData);
try {
return new Response(
JSON.stringify({ data: "return from our handler", error: null }),
{
status: 200,
}
);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
}
Let’s test it out. We should now see a response containing just our text.
text: 'In the last chapter, you and I started to step through the internal workings of a transformer. This is one of the key pieces of technology inside large language models, and a lot of other tools in the modern wave of AI. It first hit the scene in a now-famous 2017 paper called Attention is All You Need, and in this chapter you and I will dig '... 18362 more characters
Excellent. Now that we have our transcript, we can use it to prepare our summary.
But first, let’s add some basic validation.
Let’s check our form to ensure we provide a proper video ID or URL.
Then, we will check if our user is logged in and has credits.
Form Validation and Submission
First, let’s add a util function to extract a valid video ID from our YouTube url. We will use it to validate the YouTube video ID and our.
And the following is inside our utils.ts
file.
export function extractYouTubeID(urlOrID: string): string | null {
// Regular expression for YouTube ID format
const regExpID = /^[a-zA-Z0-9_-]{11}$/;
// Check if the input is a YouTube ID
if (regExpID.test(urlOrID)) {
return urlOrID;
}
// Regular expression for standard YouTube links
const regExpStandard = /youtube\.com\/watch\?v=([a-zA-Z0-9_-]+)/;
// Regular expression for YouTube Shorts links
const regExpShorts = /youtube\.com\/shorts\/([a-zA-Z0-9_-]+)/;
// Check for standard YouTube link
const matchStandard = urlOrID.match(regExpStandard);
if (matchStandard) {
return matchStandard[1];
}
// Check for YouTube Shorts link
const matchShorts = urlOrID.match(regExpShorts);
if (matchShorts) {
return matchShorts[1];
}// Return null if no match is found
return null;
}
Let’s navigate to our SummaryForm.tsx
file and import our extractYouTubeID
.
import { extractYouTubeID } from "@/lib/utils";
And update it with the following changes inside our handleFormSubmit
function.
async function handleFormSubmit(event: React.FormEvent<HTMLFormElement>) {
event.preventDefault();
setLoading(true);
toast.success("Submitting Form");
const formData = new FormData(event.currentTarget);
const videoId = formData.get("videoId") as string;
const processedVideoId = extractYouTubeID(videoId);
if (!processedVideoId) {
toast.error("Invalid Youtube Video ID");
setLoading(false);
setValue("");
setError({
...INITIAL_STATE,
message: "Invalid Youtube Video ID",
name: "Invalid Id",
});
return;
}
toast.success("Generating Summary");
const summaryResponseData = await generateSummaryService(videoId);
console.log(summaryResponseData, "Response from route handler");
toast.success("Summary Created");
setLoading(false);
}
Let’s test our front end.
Nice, we can check if we have the proper Url or ID.
Now, let’s navigate to our route handler at src/app/api/summarize/route.ts
and add a check to check if a user is logged in and has available credits.
First, import the following helper methods.
import { getUserMeLoader } from "@/data/services/get-user-me-loader";
import { getAuthToken } from "@/data/services/get-token";
And the following lines are inside the POST
function.\
export async function POST(req: NextRequest) {
const user = await getUserMeLoader();
const token = await getAuthToken();
if (!user.ok || !token)
return new Response(
JSON.stringify({ data: null, error: "Not authenticated" }),
{ status: 401 }
);
if (user.data.credits < 1)
return new Response(
JSON.stringify({
data: null,
error: "Insufficient credits",
}),
{ status: 402 }
);
// rest of code
}
The final code should look like the following.
import { NextRequest } from "next/server";
import { fetchTranscript } from "@/lib/youtube-transcript";
import { getUserMeLoader } from "@/data/services/get-user-me-loader";
import { getAuthToken } from "@/data/services/get-token";
async function getTranscript(id: string) {
try {
return await fetchTranscript(id);
} catch (error) {
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(
JSON.stringify({ error: "Failed to generate summary." })
);
}
}
function transformData(data: any[]) {
let text = "";
data.forEach((item) => {
text += item.text + " ";
});
return {
data: data,
text: text.trim(),
};
}
export async function POST(req: NextRequest) {
const user = await getUserMeLoader();
const token = await getAuthToken();
if (!user.ok || !token)
return new Response(
JSON.stringify({ data: null, error: "Not authenticated" }),
{ status: 401 }
);
if (user.data.credits < 1)
return new Response(
JSON.stringify({
data: null,
error: "Insufficient credits",
}),
{ status: 402 }
);
console.log("FROM OUR ROUTE HANDLER:", req.body);
const body = await req.json();
const videoId = body.videoId;
let transcript: Awaited<ReturnType<typeof getTranscript>>;
try {
transcript = await getTranscript(videoId);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
const transformedData = transformData(transcript);
console.log("Transcript:", transformedData);
try {
return new Response(
JSON.stringify({ data: "return from our handler", error: null }),
{
status: 200,
}
);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error }));
return new Response(JSON.stringify({ error: "Unknown error" }));
}
}
We must add a check in our SummaryForm.tsx
file to handle the errors inside our handleFormSubmit
function.
Let’s add the following code after this line.
const summaryResponseData = await generateSummaryService(videoId);
console.log(summaryResponseData, "Response from route handler");
// add the following
if (summaryResponseData.error) {
setValue("");
toast.error(summaryResponseData.error);
setError({
...INITIAL_STATE,
message: summaryResponseData.error,
name: "Summary Error",
});
setLoading(false);
return;
}
// rest of the code
The completed code should look like the following:
async function handleFormSubmit(event: React.FormEvent<HTMLFormElement>) {
event.preventDefault();
setLoading(true);
toast.success("Submitting Form");
const formData = new FormData(event.currentTarget);
const videoId = formData.get("videoId") as string;
const processedVideoId = extractYouTubeID(videoId);
if (!processedVideoId) {
toast.error("Invalid Youtube Video ID");
setLoading(false);
setValue("");
setError({
...INITIAL_STATE,
message: "Invalid Youtube Video ID",
name: "Invalid Id",
});
return;
}
toast.success("Generating Summary");
const summaryResponseData = await generateSummaryService(videoId);
console.log(summaryResponseData, "Response from route handler");
if (summaryResponseData.error) {
setValue("");
toast.error(summaryResponseData.error);
setError({
...INITIAL_STATE,
message: summaryResponseData.error,
name: "Summary Error",
});
setLoading(false);
return;
}
toast.success("Summary Created");
setLoading(false);
}
Now, let’s test our form.
Excellent, it is working. Now, we are ready to implement our logic to get our summary. Let’s do it.
Generate Summary with LangChain and OpenAI in Next.Js 14
Now, let’s write our logic to handle the generation of our summary with OpenAi and LangChain.
If you never used LangChain before, it is a tool that helps you simplify building AI-powered apps. You can learn about it here.
Before starting, install the following packages @langchain/openai
and langchain
with the following command.
yarn add @langchain/openai langchain
Nice. Now, let’s make the following changes in our route handler: Navigate to src/app/api/summarize/route.ts
and make the following changes.
First, let’s import all the required dependencies.
import { ChatOpenAI } from "@langchain/openai";
import { PromptTemplate } from "@langchain/core/prompts";
import { StringOutputParser } from "@langchain/core/output_parsers";
Next, create a function called generateSummary
with the following code.
async function generateSummary(content: string, template: string) {
const prompt = PromptTemplate.fromTemplate(template);
const model = new ChatOpenAI({
openAIApiKey: process.env.OPENAI_API_KEY,
modelName: process.env.OPENAI_MODEL ?? "gpt-4-turbo-preview",
temperature: process.env.OPENAI_TEMPERATURE
? parseFloat(process.env.OPENAI_TEMPERATURE)
: 0.7,
maxTokens: process.env.OPENAI_MAX_TOKENS
? parseInt(process.env.OPENAI_MAX_TOKENS)
: 4000,
});
const outputParser = new StringOutputParser();
const chain = prompt.pipe(model).pipe(outputParser);
try {
const summary = await chain.invoke({ text: content });
return summary;
} catch (error) {
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(
JSON.stringify({ error: "Failed to generate summary." })
);
}
}
Now, let’s create a prompt template.
const TEMPLATE = `
INSTRUCTIONS:
For the this {text} complete the following steps.
Generate the title for based on the content provided
Summarize the following content and include 5 key topics, writing in first person using normal tone of voice.
Write a youtube video description
- Include heading and sections.
- Incorporate keywords and key takeaways
Generate bulleted list of key points and benefits
Return possible and best recommended key words
`;
You can change the template accordingly to suit your needs.
Let’s use the generateSummary
function inside our POST
function. Update the code with the following.
The updated POST
function should look like the following.
export async function POST(req: NextRequest) {
const user = await getUserMeLoader();
const token = await getAuthToken();
if (!user.ok || !token)
return new Response(
JSON.stringify({ data: null, error: "Not authenticated" }),
{ status: 401 }
);
if (user.data.credits < 1)
return new Response(
JSON.stringify({
data: null,
error: "Insufficient credits",
}),
{ status: 402 }
);
console.log("FROM OUR ROUTE HANDLER:", req.body);
const body = await req.json();
const videoId = body.videoId;
let transcript: Awaited<ReturnType<typeof fetchTranscript>>;
try {
transcript = await fetchTranscript(videoId);
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(JSON.stringify({ error: "Error getting transcript." }));
}
const transformedData = transformData(transcript);
console.log("Transformed Data", transformedData);
let summary: Awaited<ReturnType<typeof generateSummary>>;
try {
summary = await generateSummary(transformedData.text, TEMPLATE);
return new Response(JSON.stringify({ data: summary, error: null }));
} catch (error) {
console.error("Error processing request:", error);
if (error instanceof Error)
return new Response(JSON.stringify({ error: error.message }));
return new Response(JSON.stringify({ error: "Error generating summary." }));
}
}
In the code above, we implemented our generateSummary
function, which will generate our summary and send it back to you via our form. We will also create a server action responsible for saving our data into our Strapi backend.
But first, let’s log the output to the console to see if we are getting back our summary.
First, create a .env.local
file and add our Open AI API key.
WARNING: Ensure your
.gitignore
file ignores the.env*.local
file from your commit so you don’t leak your Open AI key.
# local env files
.env*.local
OPENAI_API_KEY=ADD_YOUR_KEY_HERE
Let’s test our form and see if we can get our summary. Make sure to add some credits to your user.
Excellent. We can see our output on the console.
**Title:** Quickstart Guide to Launching Your Project with Strapi in Just 3 Minutes
**YouTube Video Description:**
**Heading:** Fast Track Your Development with Strapi: A 3-Minute Quickstart Guide
**Introduction:**
Join me today as we explore how to get your project up and running with Strapi in just three minutes! Strapi is an open-source headless CMS that simplifies the process of building, managing, and deploying content. Whether you're a developer, content creator, or project manager, this guide is designed to help you kickstart your project effortlessly.
**Sections:**
- **Setting Up Your Strapi Project:**
- Learn how to create a new Strapi project using the quickstart command to leverage default configurations, including setting up an SQLite database.
Rest of summary...
Now that we know we are getting our summary, the last step is to save it to Strapi and deduct 1 credit.
Saving Our Summary To Strapi
First, create a new collection-type
in Strapi admin to save our summary.
Navigate to the content builder page and create a new collection named Summary
with the following fields.
Let’s add the following fields.
NameFieldTypevideoIdTextShort TexttitleTextShort TextsummaryRich TextMarkdownuserRelationOne to many
When creating user relations, make sure you select the appropriate relation.
Here is what the final fields will look like.
Now, navigate to Setting
and add the following permissions.
Now that we have our Summary collection-type
, let’s create a server action to save our data to Strapi.
Let’s start by navigating to srs/data/actions
, creating a new file called summary-actions.ts
, and adding the following code.
"use server";
import { getAuthToken } from "@/data/services/get-token";
import { mutateData } from "@/data/services/mutate-data";
import { flattenAttributes } from "@/lib/utils";
import { redirect } from "next/navigation";
interface Payload {
data: {
title?: string;
videoId: string;
summary: string;
};
}
export async function createSummaryAction(payload: Payload) {
const authToken = await getAuthToken();
if (!authToken) throw new Error("No auth token found");
const data = await mutateData("POST", "/api/summaries", payload);
const flattenedData = flattenAttributes(data);
redirect("/dashboard/summaries/" + flattenedData.id);
}
Now that we have our createSummaryAction
, let’s use it in our handleFormSubmit,
found in our form named SummaryForm
.
First, let’s import our newly created action.
import { createSummaryAction } from "@/data/actions/summary-actions";
Update the handleFormSubmit
with the following code.
async function handleFormSubmit(event: React.FormEvent<HTMLFormElement>) {
event.preventDefault();
setLoading(true);
toast.success("Submitting Form");
const formData = new FormData(event.currentTarget);
const videoId = formData.get("videoId") as string;
const processedVideoId = extractYouTubeID(videoId);
if (!processedVideoId) {
toast.error("Invalid Youtube Video ID");
setLoading(false);
setValue("");
setError({
...INITIAL_STATE,
message: "Invalid Youtube Video ID",
name: "Invalid Id",
});
return;
}
toast.success("Generating Summary");
const summaryResponseData = await generateSummaryService(videoId);
console.log(summaryResponseData, "Response from route handler");
if (summaryResponseData.error) {
setValue("");
toast.error(summaryResponseData.error);
setError({
...INITIAL_STATE,
message: summaryResponseData.error,
name: "Summary Error",
});
setLoading(false);
return;
}
const payload = {
data: {
title: `Summary for video: ${processedVideoId}`,
videoId: processedVideoId,
summary: summaryResponseData.data,
},
};
try {
await createSummaryAction(payload);
} catch (error) {
toast.error("Error Creating Summary");
setError({
...INITIAL_STATE,
message: "Error Creating Summary",
name: "Summary Error",
});
setLoading(false);
return;
}
toast.success("Summary Created");
setLoading(false);
}
The above code will be responsible for saving our data into Strapi.
Let’s do a quick test and see if it works. We should be redirected to our summaries
route, which we have yet to create, so we will get our not found page. This is okay, and we will fix it soon.
But you should see your data in your Strapi Admin.
You will notice that we are not setting our user or deducting one credit on creation. We will do this in Strapi by creating custom middleware. But first, let’s finish all of our Next.js UI.
Create Summary Page Card View
Let’s navigate to our dashboard
folder. Inside, create another folder named summaries
with a page.tsx
file and paste it into the following code.
import Link from "next/link";
import { getSummaries } from "@/data/loaders";
import { Card, CardContent, CardHeader, CardTitle } from "@/components/ui/card";
interface LinkCardProps {
id: string;
title: string;
summary: string;
}
function LinkCard({ id, title, summary }: Readonly<LinkCardProps>) {
return (
<Link href={`/dashboard/summaries/${id}`}>
<Card className="relative">
<CardHeader>
<CardTitle className="leading-8 text-pink-500">
{title || "Video Summary"}
</CardTitle>
</CardHeader>
<CardContent>
<p className="w-full mb-4 leading-7">
{summary.slice(0, 164) + " [read more]"}
</p>
</CardContent>
</Card>
</Link>
);
}
export default async function SummariesRoute() {
const { data } = await getSummaries();
if (!data) return null;
return (
<div className="grid grid-cols-1 gap-4 p-4">
<div className="grid grid-cols-1 sm:grid-cols-2 md:grid-cols-3 lg:grid-cols-4 gap-4">
{data.map((item: LinkCardProps) => (
<LinkCard key={item.id} {...item} />
))}
</div>
</div>
);
}
Before this component works, we must create the getSummaries
function to load our data.
Let’s navigate to our loaders.ts
file and make the following changes.
First, import the following method to give us access to our auth token for authorized requests.
import { getAuthToken } from "./services/get-token";
Next, update the fetchData
function with the following code.
async function fetchData(url: string) {
const authToken = await getAuthToken();
const headers = {
method: "GET",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${authToken}`,
},
};
try {
const response = await fetch(url, authToken ? headers : {});
const data = await response.json();
return flattenAttributes(data);
} catch (error) {
console.error("Error fetching data:", error);
throw error;
}
}
Now, let’s add this code at the end of the file to get our summaries.
export async function getSummaries() {
const url = new URL("/api/summaries", baseUrl);
return fetchData(url.href);
}
Now, we need to update the following permissions in the Strapi dashboard.
Under Settings
=> User Permissions
=> Roles
=> Authenticated
, set the Global and Home-page checkboxes to checked
.
Restart your application, and you should now be able to view the list.
Now, let’s create the Single Card view.
First, we will create a dynamic route; you can learn more about dynamic routes in Next.Js docs here.
“Dynamic Routes are pages that allow you to add custom params to your URLs.”
Create a new folder called [videoId]
inside the summaries
folder.
Inside our newly created dynamic route, create a file named layout.tsx
with the following code.
import { extractYouTubeID } from "@/lib/utils";
export default async function SummarySingleRoute({
params,
children,
}: {
readonly params: any;
readonly children: React.ReactNode;
}) {
return (
<div>
<div className="h-full grid gap-4 grid-cols-5 p-4">
<div className="col-span-3">{children}</div>
<div className="col-span-2">
<div>
<p>Video will go here</p>
</div>
</div>
</div>
</div>
);
}
Create another file called page.tsx
file with the following.
interface ParamsProps {
params: {
videoId: string;
};
}
export default async function SummaryCardRoute({
params,
}: Readonly<ParamsProps>) {
return <p>Summary card with go here: {params.videoId}</p>;
}
Now that we know our pages work, let’s create the loaders to get the appropriate data.
Fetching And Displaying Our Single Video and Summary
Let’s start by navigating our loaders.ts
file and adding the following functions.
export async function getSummaryById(summaryId: string) {
return fetchData(`${baseUrl}/api/summaries/${summaryId}`);
}
Now, before using our getSummaryById
function, let’s install our video player. We will use React Player that you can find here.
Let’s start by installing it with the following command.
yarn add react-player
Let’s create a wrapper component using our React Player inside the components/custom
folder. Create a YouTubePlayer.tsx
paste the following code inside.
"use client";
import ReactPlayer from "react-player/youtube";
function generateYouTubeUrl(videoId: string) {
const baseUrl = new URL("https://www.youtube.com/watch");
baseUrl.searchParams.append("v", videoId);
return baseUrl.href;
}
interface YouTubePlayerProps {
videoId: string | null;
}
export default function YouTubePlayer({
videoId,
}: Readonly<YouTubePlayerProps>) {
if (!videoId) return null;
const videoUrl = generateYouTubeUrl(videoId);
return (
<div className="relative aspect-video rounded-md overflow-hidden">
<ReactPlayer
url={videoUrl}
width="100%"
height="100%"
controls
className="absolute top-0 left-0"
/>
</div>
);
}
Now that we have our React Player let’s update the layout.tsx
file using the following code.
import dynamic from "next/dynamic";
import { extractYouTubeID } from "@/lib/utils";
import { getSummaryById } from "@/data/loaders";
const NoSSR = dynamic(() => import("@/components/custom/YouTubePlayer"), {
ssr: false,
});
export default async function SummarySingleRoute({
params,
children,
}: {
readonly params: any;
readonly children: React.ReactNode;
}) {
const data = await getSummaryById(params.videoId);
if (data?.error?.status === 404) return <p>No Items Found</p>;
const videoId = extractYouTubeID(data.videoId);
return (
<div>
<div className="h-full grid gap-4 grid-cols-5 p-4">
<div className="col-span-3">{children}</div>
<div className="col-span-2">
<div>
<NoSSR videoId={videoId} />
</div>
</div>
</div>
</div>
);
}
In the code above, we use dynamic
to disable SSR, which helps avoid issues when using some client-side components. In this blog post, you can read more here.
Next.js docs reference on solving hydration issues here
Now, let’s display our summary.
Let’s first create a new file called SummaryCardForm.tsx
. We can add it to our src/components/forms
folder and paste it into the following code.
// import { updateSummaryAction, deleteSummaryAction } from "@/data/actions/summary-actions";
import { Input } from "@/components/ui/input";
import { Textarea } from "@/components/ui/textarea";
import { cn } from "@/lib/utils";
import {
Card,
CardContent,
CardFooter,
CardHeader,
CardTitle,
} from "@/components/ui/card";
import { SubmitButton } from "@/components/custom/SubmitButton";
import { DeleteButton } from "@/components/custom/DeleteButton";
export function SummaryCardForm({
item,
className,
}: {
readonly item: any;
readonly className?: string;
}) {
// const deleteSummaryById = deleteSummaryAction.bind(null, item.id);
return (
<Card className={cn("mb-8 relative h-auto", className)}>
<CardHeader>
<CardTitle>Video Summary</CardTitle>
</CardHeader>
<CardContent>
<div>
<form>
<Input
id="title"
name="title"
placeholder="Update your title"
required
className="mb-4"
defaultValue={item.title}
/>
<Textarea
name="summary"
className="flex w-full rounded-md bg-transparent px-3 py-2 text-sm shadow-sm placeholder:text-muted-foreground focus-visible:outline-none focus-visible:bg-gray-50 focus-visible:ring-1 focus-visible:ring-ring disabled:cursor-not-allowed disabled:opacity-50 mb-4 h-[calc(100vh-245px)] "
defaultValue={item.summary}
/>
<input type="hidden" name="id" value={item.id} />
<SubmitButton
text="Update Summary"
loadingText="Updating Summary"
/>
</form>
<form>
<DeleteButton className="absolute right-4 top-4 bg-red-700 hover:bg-red-600" />
</form>
</div>
</CardContent>
<CardFooter></CardFooter>
</Card>
);
}
We are using a new component, DeleteButton. Let’s create it inside our components/custom
folder. Create a DeleteButton.tsx
file and add the following code.
"use client";
import { useFormStatus } from "react-dom";
import { cn } from "@/lib/utils";
import { Button } from "@/components/ui/button";
import { TrashIcon } from "lucide-react";
import { Loader2 } from "lucide-react";
function Loader() {
return (
<div className="flex items-center">
<Loader2 className="h-4 w-4 animate-spin" />
</div>
);
}
interface DeleteButtonProps {
className?: string;
}
export function DeleteButton({ className }: Readonly<DeleteButtonProps>) {
const status = useFormStatus();
return (
<Button
type="submit"
aria-disabled={status.pending}
disabled={status.pending}
className={cn(className)}
>
{status.pending ? <Loader /> : <TrashIcon className="w-4 h-4" />}
</Button>
);
}
Let’s update our page.tsx
file with the following code.
import { getSummaryById } from "@/data/loaders";
import { SummaryCardForm } from "@/components/forms/SummaryCardForm";
interface ParamsProps {
params: {
videoId: string;
};
}
export default async function SummaryCardRoute({
params,
}: Readonly<ParamsProps>) {
const data = await getSummaryById(params.videoId);
if (data?.error?.status === 404) return <p>No Items Found</p>;
const videoId = extractYouTubeID(data.videoId);
}
Now that we know our front end works. Let’s revisit our route handler.
Using Strapi Route Middleware To Set User/Summary Relation
When creating our summary, we will set the summary/user relation on the backend, where we can confirm the logged-in user creating the content.
This will prevent anyone from the front end from passing a user ID that is not their own.
We are also not handling user credit updates; let’s do that in the middleware.
What is a route middleware
In Strapi, a route middleware is a type of middleware that has a more limited scope compared to global middlewares.
They control the request flow and can change the request itself before moving forward.
They can also be used to control access to a route and perform additional logic.
For example, they can be used instead of policies to control access to an endpoint. They could modify the context before passing it down to further core elements of the Strapi server.
You can learn more about route middlewares here.
Let’s first start by creating our route middleware.
We can use our cli command. In your backend
folder, run the following command.
yarn strapi generate
Choose to generate a middleware option.
▶ yarn strapi generate
yarn strapi generate
yarn run v1.22.19
$ strapi generate
? Strapi Generators
content-type - Generate a content type for an API
plugin - Generate a basic plugin
policy - Generate a policy for an API
❯ middleware - Generate a middleware for an API
migration - Generate a migration
service - Generate a service for an API
api - Generate a basic API
(Move up and down to reveal more choices)
Let’s call it on-summary-create
and add it to an existing API. Which will be summary
? Strapi Generators middleware - Generate a middleware for an API
? Middleware name on-summary-create
? Where do you want to add this middleware?
Add middleware to root of project
❯ Add middleware to an existing API
Add middleware to an existing plugin
? Which API is this for?
global
home-page
❯ summary
Now, let’s take a look in the following folder: backend/src/api/summary/middlewares.
You should see the following file: on-summary-create
with the following boilerplate.
"use strict";
/**
* `on-summary-create` middleware
*/
module.exports = (config, { strapi }) => {
// Add your own logic here.
return async (ctx, next) => {
strapi.log.info("In on-summary-create middleware.");
await next();
};
};
Let’s update it with the following code.
"use strict";
module.exports = (config, { strapi }) => {
return async (ctx, next) => {
const user = ctx.state.user;
if (!user) return ctx.unauthorized("You are not authenticated");
const availableCredits = user.credits;
if (availableCredits === 0)
return ctx.unauthorized("You do not have enough credits.");
await next();
// update the user's credits
const uid = "plugin::users-permissions.user";
const payload = {
data: {
credits: availableCredits - 1,
summaries: {
connect: [ctx.response.body.data.id],
},
},
};
try {
await strapi.entityService.update(uid, user.id, payload);
} catch (error) {
ctx.badRequest("Error Updating User Credits");
}
console.log("############ Inside middleware end #############");
};
};
In the code above, we deduct one credit and set the user and summary relation.
Before testing it out, we have to enable it inside our route.
You can learn more about Strapi’s routes here.
Navigate to the backend/src/api/summary/routes/summary.js
file and update with the following.
"use strict";
/**
* summary router
*/
const { createCoreRouter } = require("@strapi/strapi").factories;
module.exports = createCoreRouter("api::summary.summary", {
config: {
create: {
middlewares: ["api::summary.on-summary-create"],
},
},
});
Now, our middleware will fire when we create a new summary.
Now, restart your Strapi backend and Next.js frontend and create a new summary.
You will see that we are now setting our user data.
Conclusion
In part 6 of our Next.js 14 tutorial series, we tackled generating video summaries using Open AI and LangChain, a highlight feature for our Next.js app.
We built a SummaryForm component to handle user submissions and explored Next.js API routes for server-side logic.
We then leveraged OpenAI to summarize video transcripts, demonstrating the practical use of AI in web development.
In the next post, we will examine our summary details page and discuss updating and deleting posts.
As well as how to add policies to ensure that our user can only modify their content.
Hope you are enjoying this series as much as I am making it.
If you have any questions or have found “bugs,” let us know so we can continue to improve our content.